スケーラブルデータサイエンス データエンジニアのための実践Google Cloud Platform [単行本]
    • スケーラブルデータサイエンス データエンジニアのための実践Google Cloud Platform [単行本]

    • ¥4,180126ポイント(3%還元)
    • 在庫あり本日までヨドバシエクストリームサービス便(無料)がお届け
100000009003136637

スケーラブルデータサイエンス データエンジニアのための実践Google Cloud Platform [単行本]

価格:¥4,180(税込)
ポイント:126ポイント(3%還元)(¥126相当)
フォーマット:
専用電子書籍リーダアプリ「Doly」が必要です。無料ダウンロード
お届け日:在庫あり今すぐのご注文で、本日までヨドバシエクストリームサービス便(無料)がお届けします。届け先変更]詳しくはこちら
出版社:翔泳社
販売開始日: 2019/06/05
お取り扱い: のお取り扱い商品です。
ご確認事項:返品不可
店舗受け取りが可能です
NEWマルチメディアAkibaマルチメディア梅田マルチメディア博多にて24時間営業時間外でもお受け取りいただけるようになりました

スケーラブルデータサイエンス データエンジニアのための実践Google Cloud Platform の 商品概要

  • 目次

    第1章 データに基づくより良い意思決定
     1.1 多くの同様な意思決定
     1.2 データエンジニアの役割
     1.3 クラウドで実現するデータエンジニアリング
     1.4 この本の対象読者
     1.5 クラウドで進化したデータサイエンス
     1.6 この本で扱うケーススタディについて
     1.7 確率論的な意志決定
     1.8 データとツール
     1.9 コードに触れてみる
     1.10 まとめ

    第2章 クラウドへのデータの取り込み
     2.1 オンタイム・パフォーマンスデータ
     2.2 データの保存場所
     2.3 データの取り込み
     2.4 毎月のダウンロードをスケジュールする
     2.5 まとめ
     2.6 コードに触れてみる

    第3章 魅力的なダッシュボードを作成する
     3.1 ダッシュボードでモデルを説明する
     3.2 最初にダッシュボードを作成する理由
     3.3 正確さ、信頼性、良いデザイン
     3.4 Google Cloud SQLにデータを読み込む
     3.5 Google Cloud SQLインスタンスを作成する
     3.6 Google Cloud Platformの操作方法
     3.7 MySQLのアクセス制御
     3.8 テーブルの作成
     3.9 テーブルへのデータインポート
     3.10 第1のモデル
     3.11 ダッシュボードの作成
     3.12 データポータルを使ってみる
     3.13 まとめ

    第4章 ストリーミング・データ処理
     4.1 イベントフィードの設計
     4.2 時刻補正
     4.3 Apache Beam/Cloud Dataflow
     4.4 Cloud Pub/Subにイベントストリームを発行する
     4.5 リアルタイムストリーミング処理
     4.6 まとめ

    第5章 インタラクティブなデータ探索
     5.1 探索的データ分析
     5.2 フライトデータをBigQueryに読み込む
     5.3 Cloud Datalabによる探索的データ分析
     5.4 データの品質管理
     5.5 出発遅延時間に対応した到着遅延時間
     5.6 モデルの評価
     5.7 まとめ

    第6章 Cloud Dataprocによるベイズ分類器
     6.1 MapReduceとHadoopエコシステム
     6.2 Spark SQLを使用した変数の離散化
     6.3 Pigを用いたベイズ分類
     6.4 まとめ

    第7章 Sparkによるロジスティック回帰分析
     7.1 ロジスティック回帰
     7.2 特徴量エンジニアリング
     7.3 まとめ

    第8章 スライディングウィンドウによる集計処理
     8.1 時間平均の必要性
     8.2 JavaでのDataflow
     8.3 時間平均の計算
     8.4 監視、トラブルシューティング、パフォーマンスチューニング
     8.5 まとめ

    第9章 TensorFlowを用いた分類モデル
     9.1 より複雑なモデルへ
     9.2 データをTensorFlowに読み込む
     9.3 Experimentクラスの設定
     9.4 ディープニューラルネットワーク(DNN)モデル
     9.5 まとめ

    第10章 リアルタイム機械学習
     10.1 予測サービスの呼び出し
     10.2 フライト情報への予測の追加
     10.3 ストリーミングパイプライン
     10.4 トランザクション、スループット、待ち時間
     10.5 まとめ
     10.6 本書のまとめ

    付録A 機械学習データセット内の機密データに関する考慮事項
     A.1 機密情報の取り扱い
     A.2 機密データの識別
     A.3 機密データの保護
     A.4 ガバナンスポリシーの確立

  • 出版社からのコメント

    効率よく短期間でデータサイエンティストを目指したい技術者のための本
  • 内容紹介

    身近な例からデータサイエンスの深淵を体感し
    スケールさせるノウハウを学ぶ

    【本書の内容】
    「膨大なデータを分析して傾向を探り意思決定に援用する」とはよく耳にするフレーズですが、「膨大なデータ」から「援用する」までの間に、どのようなことがなされているのでしょうか。その各段階における必要な知識や技能やツールやインフラにはなにがあるのでしょうか。
    本書はそういった疑問を、身近な例(フライトスケジュールからミーティングの参加・不参加確定)から説き起こします。とはいえ、それは単に米国運輸省のデータをダウンロードし、フライトの傾向を時間軸に合わせて分析し、スケジュールとして提示する、という“シンプル”なストーリーではありません。
    「データ分析を実行してビジネスで成果を出す」ことができる人を「データエンジニア」と呼ぶ、Googleならではの文化が色濃く出た1冊です。すなわち、クエリの構築やレポート、グラフ化が最終目標ではなく、それらをひっくるめたスケーラブルで反復可能なシステムを構築できる人材への足がかりとなる1冊であり、肩書としての「データサイエンティスト」から、真に求められているデータサイエンティストへと、自身をスケールしていくための手引書です。

    本書は、
    Valliappa Lakshmanan,
    "Data Science on the Google Cloud Platform: Implementing End-to-End Real-Time Data Pipelines: From Ingest to Machine Learning", O'Reilly Media, January 12, 2018.
    の邦訳版です。

    【本書のポイント】
    ・Google Cloud Platformの具体的な活用方法
    ・データ分析からサービス構築まで、必要な知識
    ・データサイエンスをスケールするという考え方

    【読者が得られること】
    ・データサイエンスに必要な知識を段階を追って習得できる
    ・データ収集からサービス構築までの一連の流れを理解できる
    ・各ステージにおける勘所や肝となる考え方を学べる
    ・Google Cloud Platformにある一群のツールを使えるようになる
    ・統計学や機械学習を理解していれば、モデルをコード化できるようになる

    【対象読者】
    ・データエンジニア、データサイエンティスト
    ・データアナリスト、データベース管理者
    ・システムプログラマ

  • 著者紹介(「BOOK著者紹介情報」より)(本データはこの書籍が刊行された当時に掲載されていたものです)

    ラクシュマナン,バリアッパ(ラクシュマナン,バリアッパ/Lakshmanan,Valliappa)
    Google Cloudのプロフェッショナルサービス部門でデータ分析と機械学習の技術リーダーを務めている。Google入社前は、Climate Corporationでデータサイエンティストのチームを率いていた。また、NOAA National Severe Storms Laboratoryでリサーチサイエンティストを務め、悪天候の診断と予測のための機械学習アプリケーションの開発に取り組んでいた

スケーラブルデータサイエンス データエンジニアのための実践Google Cloud Platform の商品スペック

商品仕様
出版社名:翔泳社
著者名:バリアッパ ラクシュマナン(著)/葛木 美紀(訳)/中井 悦司(監修)/長谷部 光治(監修)
発行年月日:2019/06/05
ISBN-10:4798158836
ISBN-13:9784798158839
判型:B5
対象:専門
発行形態:単行本
内容:電子通信
言語:日本語
ページ数:390ページ
縦:23cm
横:19cm
その他: 原書名: DATA SCIENCE ON THE GOOGLE CLOUD PLATFORM〈Lakshmanan,Valliappa〉
他の翔泳社の書籍を探す

    翔泳社 スケーラブルデータサイエンス データエンジニアのための実践Google Cloud Platform [単行本] に関するレビューとQ&A

    商品に関するご意見やご感想、購入者への質問をお待ちしています!