アルゴリズムとデータサイエンス(身近なモノやサービスから学ぶ「情報」教室④) [全集叢書]
    • アルゴリズムとデータサイエンス(身近なモノやサービスから学ぶ「情報」教室④) [全集叢書]

    • ¥2,75083 ゴールドポイント(3%還元)
    • 在庫あり2024年10月15日火曜日までヨドバシエクストリームサービス便(無料)がお届け
アルゴリズムとデータサイエンス(身近なモノやサービスから学ぶ「情報」教室④) [全集叢書]
画像にマウスを合わせると上部に表示
100000009003728069

アルゴリズムとデータサイエンス(身近なモノやサービスから学ぶ「情報」教室④) [全集叢書]

価格:¥2,750(税込)
ゴールドポイント:83 ゴールドポイント(3%還元)(¥83相当)
フォーマット:
お届け日:在庫あり今すぐのご注文で、2024年10月15日火曜日までヨドバシエクストリームサービス便(無料)がお届けします。届け先変更]詳しくはこちら
出版社:創元社
販売開始日: 2023/08/29
お取り扱い: のお取り扱い商品です。
ご確認事項:返品不可
店舗受け取りが可能です
マルチメディアAkibaマルチメディア梅田マルチメディア博多にて24時間営業時間外でもお受け取りいただけるようになりました

アルゴリズムとデータサイエンス(身近なモノやサービスから学ぶ「情報」教室④) の 商品概要

  • 目次

    Chapter 1 アルゴリズム
    1-1 アルゴリズムとは
    1-2 よいアルゴリズムの指標
    1-3 フローチャート

    Chapter 2 代表的なアルゴリズム
    2-1 探索問題
    2-2 ソーティング
    2-3 最短経路問題

    Chapter 3 アルゴリズムとデータ構造
    3-1 配列
    3-2 リスト
    3-3 木構造
    3-4 スタックとキュー

    Chapter 4 さまざまな現象のシミュレーション
    4-1 数式に従う現象のシミュレーション
    4-2 確率的シミュレーション
    4-3 検定

    Chapter 5 データの分布形状の考慮
    5-1 分布形状の考慮
    5-2 距離尺度
    5-3 主成分分析

    Chapter 6 クラスタリング
    6-1 クラスタリングとは
    6-2 k-means アルゴリズム
    6-3 階層型クラスタリング

    Chapter 7 重回帰分析による予測
    7-1 重回帰分析とは
    7-2 重回帰分析の方法
    7-3 変数の種類
    7-4 モデルのよさと変数選択

    Chapter 8 購買データの分析と推薦
    8-1 同時購入商品に注目した分析
    8-2 購入者に注目した分析

    Chapter 9 機械学習による認識
    9-1 人工知能と機械学習
    9-2 データの準備
    9-3 古典的な機械学習アルゴリズム
    9-4 認識結果の評価

    Chapter 10 深層学習
    10-1 ニューラルネットワーク
    10-2 ニューラルネットワークによる物体認識
    10-3 ニューラルネットワークの学習方法
    10-4 代表的なニューラルネットワークの形状
  • 出版社からのコメント

    アルゴリズムの基本的な考え方と種類、さまざまなデータ分析の手法のほか、機械学習やニューラルネットワークについて学びます。
  • 内容紹介

    「AI人材」や「高度IT人材」を目指す人のみならず、今やコンピュータサイエンスやデジタル技術に関する知識は〈これから〉の時代を生きていくすべての人に必要なものになりました。
    学校教育の現場では「GIGAスクール構想」のもと1人1台タブレット端末が配布され、小学生のときからデジタル教材やプログラミングに触れる機会が増え、この動きは中学校にも拡大しています。高校では「情報Ⅰ」の新科目が必修となり、2025年から大学入学共通テストへの導入が決まりました。
    新しい時代へのパスポートとなるこの全5巻のシリーズは、日常生活の中で見聞きする話題から始まり、まるで紙面上で実際に授業を受けているような感覚が味わえる、読みやすくて楽しい入門書です。

    シリーズ第4巻は、アルゴリズムの基本的な考え方と種類、データ構造やさまざまなデータ分析の手法のほか、機械学習やニューラルネットワークについて学びます。

    【シリーズの特長】
    ◆親しみやすい話題から始まる
    各章のテーマに関する〈身近なモノやサービス〉の事例やエピソードを紹介。
    ◆高校で学ぶ「情報」の学習範囲に準拠
    2022年度開始の新科目「情報Ⅰ」、2023年度開始の「情報Ⅱ」をフォロー。
    ◆理解を助ける豊富な写真や図表
    イメージしにくい概念や考え方をビジュアル面から補足。
    ◆学生から社会人まで役立つ
    中高生からの独習~社会人の学びなおし(リスキリング)ニーズに対応。「ITパスポート」「基本情報技術者」試験の受験者や「情報」教科担当職員の事前学習用に最適。

    図書館選書
    高校で学ぶ「情報」科目をカバーした読みやすい入門書。シリーズ第4巻は、アルゴリズムの基本的な考え方と種類、データ構造やさまざまなデータ分析の手法のほか、機械学習やニューラルネットワークについて学びます。
  • 著者について

    土屋 誠司 (ツチヤ セイジ)
    同志社大学理工学部インテリジェント情報工学科教授、人工知能工学研究センター・センター長。同志社大学工学部知識工学科卒業、同志社大学大学院工学研究科博士課程修了。徳島大学大学院ソシオテクノサイエンス研究部助教、同志社大学理工学部インテリジェント情報工学科准教授などを経て、2017年より現職。主な研究テーマは知識・概念処理、常識・感情判断、意味解釈。著書に『やさしく知りたい先端科学シリーズ はじめてのAI』『AI時代を生き抜くプログラミング的思考が身につくシリーズ』(創元社)、『はじめての自然言語処理』(森北出版)がある。

    鈴木 基之 (スズキ モトユキ)
    大阪工業大学情報科学部情報メディア学科教授。東北大学工学部情報工学科卒業、同大大学院博士前期課程修了。同大大型計算機センター助手、英国エジンバラ大学客員研究員、徳島大学大学院ソシオテクノサイエンス研究部准教授、大阪工業大学情報科学部情報メディア学科准教授などを経て、2017年より現職。博士(工学)。同志社大学人工知能工学研究センター嘱託研究員。主な研究テーマは音声の認識や理解、感情の認識、音声対話システム、音楽情報処理。著書に『発見科学とデータマイニング』(共立出版、共著)、『生体情報計測による感情の可視化技術』(技術情報協会、共著)がある。

アルゴリズムとデータサイエンス(身近なモノやサービスから学ぶ「情報」教室④) の商品スペック

商品仕様
出版社名:創元社
著者名:土屋誠司(編)/鈴木基之(著)
発行年月日:2023/08
ISBN-10:4422400843
ISBN-13:9784422400846
判型:A5
発売社名:創元社
対象:一般
発行形態:全集叢書
内容:電子通信
言語:日本語
ページ数:200ページ
縦:22cm
横:16cm
厚さ:2cm
重量:495g
他の創元社の書籍を探す

    創元社 アルゴリズムとデータサイエンス(身近なモノやサービスから学ぶ「情報」教室④) [全集叢書] に関するレビューとQ&A

    商品に関するご意見やご感想、購入者への質問をお待ちしています!